Suggestive Annotation: A Deep Active Learning Framework for Biomedical Image Segmentation

نویسندگان

  • Lin Yang
  • Yizhe Zhang
  • Jianxu Chen
  • Siyuan Zhang
  • Danny Ziyi Chen
چکیده

Image segmentation is a fundamental problem in biomedical image analysis. Recent advances in deep learning have achieved promising results on many biomedical image segmentation benchmarks. However, due to large variations in biomedical images (different modalities, image settings, objects, noise, etc), to utilize deep learning on a new application, it usually needs a new set of training data. This can incur a great deal of annotation effort and cost, because only biomedical experts can annotate effectively, and often there are too many instances in images (e.g., cells) to annotate. In this paper, we aim to address the following question: With limited effort (e.g., time) for annotation, what instances should be annotated in order to attain the best performance? We present a deep active learning framework that combines fully convolutional network (FCN) and active learning to significantly reduce annotation effort by making judicious suggestions on the most effective annotation areas. We utilize uncertainty and similarity information provided by FCN and formulate a generalized version of the maximum set cover problem to determine the most representative and uncertain areas for annotation. Extensive experiments using the 2015 MICCAI Gland Challenge dataset and a lymph node ultrasound image segmentation dataset show that, using annotation suggestions by our method, state-of-the-art segmentation performance can be achieved by using only 50% of training data.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantization of Fully Convolutional Networks for Accurate Biomedical Image Segmentation

With pervasive applications of medical imaging in health-care, biomedical image segmentation plays a central role in quantitative analysis, clinical diagnosis, and medical intervention. Since manual annotation suffers limited reproducibility, arduous efforts, and excessive time, automatic segmentation is desired to process increasingly larger scale histopathological data. Recently, deep neural ...

متن کامل

Partial Labeled Gastric Tumor Segmentation via patch-based Reiterative Learning

Gastric cancer is the second leading cause of cancer-related deaths worldwide, and the major hurdle in biomedical image analysis is the determination of the cancer extent. This assignment has high clinical relevance and would generally require vast microscopic assessment by pathologists. Recent advances in deep learning have produced inspiring results on biomedical image segmentation, while its...

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

Self-Learning to Detect and Segment Cysts in Lung CT Images without Manual Annotation

Image segmentation is a fundamental problem in medical image analysis. In recent years, deep neural networks achieve impressive performances on many medical image segmentation tasks by supervised learning on large manually annotated data. However, expert annotations on big medical datasets are tedious, expensive or sometimes unavailable. Weakly supervised learning could reduce the effort for an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017